Afficher la notice abrégée
| dc.contributor.author |
Laid Abderrahmane |
|
| dc.contributor.author |
Ouffa Wissal |
|
| dc.date.accessioned |
2025-10-28T11:40:51Z |
|
| dc.date.available |
2025-10-28T11:40:51Z |
|
| dc.date.issued |
2025 |
|
| dc.identifier.uri |
https://di.univ-blida.dz/jspui/handle/123456789/40815 |
|
| dc.description |
4.621.1.1382;157p |
fr_FR |
| dc.description.abstract |
This thesis presents an edge-computing system for real-time industrial machine monitoring,
combining an STM32F103RB microcontroller with NanoEdge AI Studio to Monitor Machine
state on-device without cloud dependency. Vibration data from an MPU6050 sensor is captured
via DMA, analyzed by embedded AI, and displayed locally on an OLED while being relayed to a web
dashboard (via CAN bus and ESP32). A custom 6-layer PCB and modular firmware architecture
ensure low-latency processing and scalability. The solution demonstrates
how lightweight embedded AI can enable cost-effective predictive maintenance. |
fr_FR |
| dc.language.iso |
en |
fr_FR |
| dc.publisher |
blida1 |
fr_FR |
| dc.subject |
Edge-computing, STM32, NanoEdge, DMA, PCB |
fr_FR |
| dc.title |
Design and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoring |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée