Université Blida 1

Design and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoring

Afficher la notice abrégée

dc.contributor.author Laid Abderrahmane
dc.contributor.author Ouffa Wissal
dc.date.accessioned 2025-10-28T11:40:51Z
dc.date.available 2025-10-28T11:40:51Z
dc.date.issued 2025
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/40815
dc.description 4.621.1.1382;157p fr_FR
dc.description.abstract This thesis presents an edge-computing system for real-time industrial machine monitoring, combining an STM32F103RB microcontroller with NanoEdge AI Studio to Monitor Machine state on-device without cloud dependency. Vibration data from an MPU6050 sensor is captured via DMA, analyzed by embedded AI, and displayed locally on an OLED while being relayed to a web dashboard (via CAN bus and ESP32). A custom 6-layer PCB and modular firmware architecture ensure low-latency processing and scalability. The solution demonstrates how lightweight embedded AI can enable cost-effective predictive maintenance. fr_FR
dc.language.iso en fr_FR
dc.publisher blida1 fr_FR
dc.subject Edge-computing, STM32, NanoEdge, DMA, PCB fr_FR
dc.title Design and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoring fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte