Université Blida 1

Sentiment analysis in Arabic dialect

Afficher la notice abrégée

dc.contributor.author Bouziane, Abdelillah
dc.contributor.author Ladjenef, Mohamed
dc.contributor.author Bouziane, Abdelghani. (promoteur)
dc.date.accessioned 2025-12-10T14:19:25Z
dc.date.available 2025-12-10T14:19:25Z
dc.date.issued 2025
dc.identifier.uri https://di.univ-blida.dz/jspui/handle/123456789/41136
dc.description ill.,Bibliogr.cote:MA-004-1070 fr_FR
dc.description.abstract Sentiment analysis is a key area of natural language processing that aims to automatically identify and interpret opinions and emotions expressed in text. With the growing volume of user-generated content on social media, analyzing sentiment has become increasingly valuable for researchers and organizations. This study focuses on sentiment analysis in Arabic, with a particular emphasis on dialectal variations. Due to the complexity of the Arabic language-its morphology, diverse dialects, and lack of annotated resources this task presents unique challenges. The work explores various text representation techniques and evaluates a range of machine learning and deep learning models to determine suitable approaches for Arabic sentiment classification. Through systematic experimentation, this research highlights the impact of text encoding methods and model choice on sentiment classification performance in Arabic, offering insights for future studies in this under-resourced linguistic domain. Keywords: Sentiment Analysis, Machine learning, Deep learning,. fr_FR
dc.language.iso en fr_FR
dc.publisher Université Blida 1 fr_FR
dc.subject Sentiment Analysis fr_FR
dc.subject Machine learning fr_FR
dc.subject Deep learning,. fr_FR
dc.title Sentiment analysis in Arabic dialect fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte