Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/41042| Titre: | Study of some roman domination parameters |
| Auteur(s): | Abdelhak, Omar |
| Mots-clés: | A double Roman dominating function |
| Date de publication: | 2025 |
| Editeur: | univ.Blida 1 |
| Résumé: | Let G = (V;E) be a simple graph. A Roman dominating function (RDF for short) on G is a function f : V ..! f0; 1; 2g satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight w (f) of an RDF f is de.ned as w(f) = Pu2V f(u). The minimum weight of an RDF on a graph G is called the Roman domination number of G, denoted R(G). A double Roman dominating function (DRDF) of a graph G is a function f : V ! f0; 1; 2; 3g for which the following conditions are satis.ed. i) If f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor assigned 3 under f. ii) If f(v) = 1, then the vertex v must have at least one neighbor u with f(u) 2. The weight w (f) of an DRDF f is the value w(f) = Pu2V f(u). The minimum weight of an DRDF on a graph G is called the double Roman domination number of G, denoted dR(G). In this thesis, we will extend the study of double Roman domination by presenting new results on the Nordhaus-Gaddum type inequality and providing a characterization of all graphs G satisfying dR (G) = 2 R (G) .. 1. We will also explore the concept of criticality, and solve some problems from various papers in this area. |
| URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/41042 |
| Collection(s) : | Thèses de Doctorat |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| 32-510-183.pdf | These | 821,02 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.